【导读】江西统招专升本高数范围是哪些?下面跟江西专升本考试信息网一起看看吧!
江西专升本数学考试范围包括函数、极限、连续、一元函数微分学及其应用、一元函数积分学及其应用、多元函数微分学及其应用、二重积分及其应用、常微分方程等。具体内容如下:
一、函数、极限和连续
(一)函数
1.理解函数的概念,掌握函数(含分段函数)的定义域、表达式及函数值的求法,掌握实际问题的函数关系式的建立。
2.了解函数的单调性、奇偶性、有界性和周期性的概念。
3.了解反函数的概念。
4.掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。
5.熟练掌握基本初等函数的性质及其图象。
6.了解初等函数的概念。
(二)极限
1.了解数列极限的概念。
2.了解函数极限的概念,理解函数极限存在的充分必要条件。
3.熟练掌握极限的四则运算法则。
4.熟练掌握两个重要极限。
5.了解无穷小量、无穷大量的概念、无穷小量的性质、无穷小量与无穷大量的关系。理解高阶、低阶、同阶和等价无穷小量的概念,熟练掌握等价无穷小代换求极限的方法。
(三)连续
1.理解函数在一点连续与间断的概念,掌握函数(含分段函数)连续性的判断方法。
2.掌握求函数的间断点并判断其类型的方法。
3.了解闭区间上连续函数的最值定理、介值定理、零值定理。
4.理解初等函数在其定义区间上的连续性,掌握用函数连续性求极限的方法。
二、一元函数微分学及其应用
(一)导数与微分
1.理解导数的概念、导数的几何意义、函数可导性与连续性之间的关系,掌握用导数定义判断函数在一点处的可导性的方法。
2.掌握曲线的切线方程与法线方程的求法。
3.熟练掌握导数的基本公式、四则运算法则、复合函数的求导法则。
4.掌握隐函数和由参数方程所确定的函数的求导法,掌握对数求导法。
5.理解高阶导数的概念,掌握高阶导数的求法。
6.理解函数微分的概念,理解可微与可导的关系、微分的四则运算法则、一阶微分的形式不变性,掌握函数微分的求法。
(二)微分中值定理与导数的应用
1.了解罗尔中值定理、拉格朗日中值定理。
2.熟练掌握用洛必达法则求零比零型号、无穷比无穷型、零乘无穷型、无穷-无穷型未定式的极限。
3.掌握用导数判定函数单调性的方法,掌握函数的单调区间的求法。
4.了解函数极值的概念,掌握函数的极值和最值的求法,熟练掌握实际问题最值的求法。
5.掌握曲线凹向的判定方法,掌握曲线的凹凸区间和拐点的求法。
三、一元函数积分学及其应用
(一)不定积分
1.理解原函数与不定积分的概念,掌握不定积分的性质。
2.熟练掌握基本积分公式。
3.熟练掌握不定积分第一换元法,掌握不定积分第二换元法。
4.熟练掌握不定积分的分部积分法。
(二)定积分
1.了解定积分的概念,理解定积分的几何意义,了解函数可积的条件。
2.掌握定积分的基本性质。
3.理解变限积分函数的概念,熟练掌握变上限函数的导数。
4.熟练掌握牛顿-莱布尼茨公式。
5.熟练掌握定积分的换元积分法与分部积分法。
(三)定积分的应用
1.熟练掌握直角坐标系下用定积分计算平面图形面积的方法。
2.掌握求平面图形绕坐标轴旋转所生成的旋转体体积的方法。
四、常微分方程
(一)一阶微分方程
1.了解微分方程的基本概念。
2.熟练掌握可分离变量微分方程的解法。
3.掌握齐次微分方程的解法。
4.掌握一阶线性微分方程的解法。
(二)二阶线性微分方程
1.了解二阶线性微分方程解的结构。
2.掌握二阶常系数齐次线性微分方程的解法。
五、多元函数微分学及其应用
(一)多元函数微分学
1.了解多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念,掌握二元函数定义域的求法。
2.理解偏导数的概念,熟练掌握多元函数一、二阶偏导数的求法。
3.了解全微分的概念,理解全微分存在的必要条件与充分条件,掌握多元函数全微分的求法。
4.掌握多元复合函数的求导法则。
5.了解隐函数存在定理,掌握求由方程 所确定隐函数 的一阶偏导数的方法。
6.掌握求二元函数极值的方法。
(二)多元函数微分学的应用
1.掌握求解实际问题中的多元函数最值的方法。
2.掌握用拉格朗日乘数法求解实际问题最值的方法。
六、二重积分及其应用
1.了解二重积分的概念与性质,理解二重积分的几何意义。
2.熟练掌握二重积分在直角坐标系和极坐标系下的计算方法,掌握交换二次积分的积分次序的方法。
3.掌握用二重积分计算空间立体体积的方法。
【结尾】以上就是关于“江西统招专升本高数范围是哪些?”的全部内容了,更多关于江西省专升本相关资讯,如江西专升本考试常见问题、复习备考、考试科目、相关资讯、报考条件、报考院校、报考专业、考试大纲等,敬请关注江西统招专升本网(www.jxztc.com)。

江西专升本声明
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。
文章来源于网络,如有侵权,请联系删除